Splines on generalized quasi-cross-cut partitions
نویسندگان
چکیده
منابع مشابه
Local quasi-interpolation by cubic C1 splines on type-6 tetrahedral partitions
We describe an approximating scheme based on cubic C1 splines on type-6 tetrahedral partitions using data on volumetric grids. The quasi-interpolating piecewise polynomials are directly determined by setting their Bernstein–Bézier coefficients to appropriate combinations of the data values. Hence, each polynomial piece of the approximating spline is immediately available from local portions of ...
متن کاملApproximately Quasi Inner Generalized Dynamics on Modules
We investigate some properties of approximately quasi inner generalized dynamics and quasi approximately inner generalized derivations on modules. In particular, we prove that if A is a C*-algebra, is the generator of a generalized dynamics on an A-bimodule M satisfying and there exist two sequences of self adjoint elements in A such that for all in a core for , , then is approx...
متن کاملQuasi-interpolatory splines based on Schoenberg points
By using the Schoenberg points as quasi-interpolatory points, we achieve both generality and economy in contrast to previous sets, which achieve either generality or economy, but not both. The price we pay is a more complicated theory and weaker error bounds, although the order of convergence is unchanged. Applications to numerical integration are given and numerical examples show that the accu...
متن کاملQuasi-interpolants Based on Trigonometric Splines
A general theory of quasi-interpolants based on trigonometric splines is developed which is analogous to the polynomial spline case. The aim is to construct quasi-interpolants which are local, easy to compute, and which apply to a wide class of functions. As examples, we give a detailed treatment including error bounds for two classes which are especially useful in practice.
متن کاملInteractive Isosurfaces with Quadratic C Splines on Truncated Octahedral Partitions
The reconstruction of a continuous function from discrete data is a basic task in many applications such as the visualization of 3D volumetric data sets. We use a local approximation method for quadratic C1 splines on uniform tetrahedral partitions to achieve a globally smooth function. The spline is based on a truncated octahedral partition of the volumetric domain, where each truncated octahe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1998
ISSN: 0377-0427
DOI: 10.1016/s0377-0427(98)00092-2